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In the context of geologic sequestration of carbon dioxide in saline aquifers, much
interest has been focused on the process of density-driven convection resulting from
dissolution of CO2 in brine in the underlying medium. Recent investigations have
studied the time and length scales characteristic of the onset of convection based on
the framework of linear stability theory. It is well known that the non-autonomous
nature of the resulting matrix does not allow a normal mode analysis and previous
researchers have either used a quasi-static approximation or solved the initial-value
problem with arbitrary initial conditions. In this manuscript, we describe and use the
recently developed non-modal stability theory to compute maximum amplifications
possible, optimized over all possible initial perturbations. Non-modal stability theory
also provides us with the structure of the most-amplified (or optimal) perturbations.
We also present the details of three-dimensional spectral calculations of the governing
equations. The results of the amplifications predicted by non-modal theory compare
well to those obtained from the spectral calculations.

1. Introduction
Carbon dioxide storage in deep saline aquifers is considered to be one of the

most promising ways of mitigating greenhouse gas emissions (see IPCC 2005). Saline
formations are usually characterized by a high porosity and permeability, are filled
with non-potable water and are usually covered by a layer of very low-permeability
caprock on the top. This technology has already been implemented in a few operations
around the world. The most notable of these is at the Sleipner West field in Norway,
operated by Statoil Corporation. About 2800 tons per day of CO2 extracted from the
field is being stored underground at a depth of 1000 m, and is being monitored by
seismic surveys.

Under the conditions at which it is injected, CO2 is in a supercritical state and its
density is lower than that of the water in the medium. The injected carbon dioxide
migrates upwards due to buoyancy and settles as a layer under the low-permeability
caprock at the top of the aquifer. The carbon dioxide can migrate laterally along the
caprock, which leads to the possibility of leakage due to either fractures or other wells.
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Figure 1. Schematic of carbon dioxide injection, migration and leakage during geologic
storage.

A schematic of the injection, migration and leakage processes is shown in figure 1.
Carbon dioxide also begins to slowly dissolve in the water. The water with dissolved
carbon dioxide has a density slightly greater (by about 1 %) than that of water alone
(Garcia 2001), leading to a gravitational instability. This instability leads to finger-like
convection patterns, which greatly enhance the rate of dissolution of CO2 into the
medium. This process of fingering can lead to localization of the injected carbon
dioxide and plays a dominant role in the long term.

One of the earliest analyses of the onset of convection in porous media was
performed by Horton & Rogers Jr (1945) and Lapwood (1948) who dealt with the
problem in isotropic media. This problem is characterized by a linear stationary base
state in which stability can be characterized using a single non-dimensional parameter,
the Rayleigh number. Convection occurs for all Rayleigh numbers greater than a
critical value. For a given Rayleigh number, one can obtain the critical wavenumber
corresponding to the length scale of the most unstable mode. The problem has been
analysed using a linear stability approach similar to the one used for the clear fluid
case (Chandrasekhar 1961). The predictions of the linear stability theory were found
to be in good agreement with experiments as well as numerical simulations. The
analysis was extended to anisotropic porous media by Castinel & Combarnous (1977)
and Epherre (1977). An excellent discussion of the existing work is provided in the
book by Nield & Bejan (1999).

The carbon sequestration problem is characterized by a time-dependent base state,
and in this way differs from the problem studied by Horton & Rogers Jr (1945) and
Lapwood (1948). The transient nature of the base state leads to the presence of a time
scale (critical time) for the onset of convection along with the critical wavenumber.
Caltagirone (1980) analysed the onset of convection using linear and energy stability
analyses for the time-dependent problem with Dirichlet boundary conditions. Ennis-
King & Paterson (2005) and Ennis-King, Preston & Paterson (2005) extended this
analysis for an anisotropic porous medium, and obtained estimates for the critical
time and the critical wavenumber. They also used single-term approximations of the
Galerkin expansion to obtain analytic expressions for the dependence of critical
time and wavenumbers on the anisotropy of the medium. Xu, Chen & Zhang
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(2006) extended Ennis-King et al.’s work by considering the variation of both the
horizontal and vertical permeabilities and found the dependence of critical time and
wavenumbers on permeability to be simple power laws. Both of these sets of authors
defined the critical time as the time required for the amplitude of the perturbations
to begin amplifying. Following Ben, Demekhin & Chang (2002), Riaz et al. (2006)
studied the problem for isotropic media using linear stability theory after a coordinate
transformation to a similarity variable. They show that the solution resolves to the
dominant mode rapidly in this formulation, allowing them to study the growth
rate of just the dominant mode. They also conducted high-resolution numerical
simulations and found good agreement for the growth rate of perturbations between
the simulations and the stability theory. Kim, Kim & Kim (2004) and Park et al. (2006)
studied the problem using propagation theory and Hassanzadeh, Pooladi-Darvish &
Keith (2006) studied the linear stability using different initial conditions that span a
range of wavenumbers.

The time-dependence of the base state causes considerable difficulty in analysing the
linear stability of the system. When the governing PDEs are linearized and reduced
to a set of coupled ODE–initial-value problems using a suitable eigenfunction
expansion, the resulting matrix that combines the dynamics of various modes
becomes time-dependent. The traditional approach of studying the eigenvalues is
not applicable to general non-autonomous systems except for some special cases
such as a periodic dependence where Floquet’s theory can be applied (see Bauer
& Nohel 1969). Further, the matrix is also not normal (i.e. does not commute with
its adjoint) and therefore does not possess an orthogonal eigenvector-basis. Much
progress has been made in the last decade in generalizing the traditional normal
mode theory (applicable only when the matrix is normal) to the general non-normal
non-autonomous case. This theory is called non-modal stability theory. An excellent
description of the basic ideas can be obtained from Farrell & Ioannou (1996a,b) and
the review article by Schmid (2007). Trefethen & Embree (2005) contains a detailed
exposition on the very closely related idea of ε-pseudospectra along with many
applications.

Linear stability analysis provides us with a sufficient condition for instability. The
energy stability method, which is the nonlinear extension of the linear method, on the
other hand provides us with a sufficient condition for stability. Here, one converts the
PDEs for the evolution of the perturbation quantities into one for a suitably defined
energy functional. Traditionally, the form of the energy functional used is a linear
combination of the kinetic energy of the flow and the mean-squared magnitude of the
perturbations. This equation is then analysed to obtain the conditions required for
stability. These nonlinear (finite-amplitude) solutions may become unstable for many
classes of problems which are linearly stable. So, the time scales obtained by energy
analysis are lower than those obtained by linear stability analysis. Homsy (1973)
studied the energy stability of impulsively heated fluid layers. A thorough description
of the energy methods and their applications is provided by Straughan (2004).

While discussing the results of the linear stability analysis, Ennis-King et al. (2005)
report two different problems with the approach that they used: (i) the choice of
criterion for instability – due to linearization, the perturbations at any time t are
always proportional to the initial perturbations, and there is no obvious choice of a
critical time scale; and (ii) the choice of initial conditions – the ‘white-noise’ initial
condition used is not localized within the diffuse zone as one would expect and need
not correspond to the most unstable perturbation. In this work, we try to overcome
these difficulties by applying the recently developed idea of non-modal stability theory.
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We begin by briefly explaining the ideas of non-modal stability theory and present
the approach used in this paper to analyse the growth of perturbations in our system.
Compared to previous approaches, non-modal stability theory is a rigorously justified
approach which provides the maximum amplification obtained among all possible
perturbations at a given time. It also provides the structure of the initial perturbation
which is most-amplified at any given time. After presenting the results obtained
from the non-modal theory, we describe our three-dimensional, spectral numerical
calculations and compare the growth rates predicted by non-modal theory to that
measured from simulations. We find an excellent match between the simulations
and the non-modal theory for very long times. Eventually, the perturbations amplify
to such an extent that the nonlinear terms neglected in the linear theory become
dominant. The above results suggest that the time at which nonlinear terms begin
to dominate is an excellent, experimentally measurable indicator of the onset of
convection.

The problem of subsurface flow in porous media is extremely complicated, and
many research groups have been focusing much effort on methods of numerical
simulation. Some of the most notable tools developed for modelling flow in porous
media are the TOUGH2 code (Pruess 1991; Garcia 2003) developed at the Lawrence
Berkeley Labs, the FEHM code (Zyvoloski et al. (http://fehm.lanl.gov/)) developed
at the Los Alamos National Laboratory and the PFLOTRAN code (Lu & Lichtner
2005) also developed at Los Alamos.

2. Governing equations
In this paper, we only deal with the single-phase problem consisting of brine with

dissolved carbon dioxide. The primary equations governing the flow are the same as
those considered by Ennis-King et al. (2005) and Xu et al. (2006). They are Darcy’s
law for the momentum of the fluid, the advection diffusion equation for concentration
of dissolved CO2 and the continuity equation. Previous work (Garcia 2001) on the
equation of state of the water–CO2 system has shown that the dependence of the
density of the medium on the concentration of CO2 is approximately linear. Further,
the maximum density difference between water saturated with CO2 and pure water
is only of the order of 1 %. So, we work in the framework of the Boussinesq
approximation to simplify the problem. The governing equations are

μ∗k∗−1

v∗ = −∇P ∗ + ρ∗
f gez, (2.1)

φ
∂C∗

∂t∗ + v∗ · ∇∗C∗ = φD∗∇∗2

C∗, (2.2)

∇∗ · v∗ = 0, (2.3)

ρ∗
f = ρ∗

0 (1 + βC∗). (2.4)

Here μ∗ is the viscosity of the medium, k∗ is the permeability of the medium,
v∗ = (u∗, v∗, w∗) is the Darcy velocity, C∗ is the concentration of CO2, P ∗ is the
pressure, ρ∗

f is the density of the mixture, φ is the porosity, D∗ is the diffusivity of
CO2 in water, ρ∗

0 is the density of pure water, g is the acceleration due to gravity, β is
the coefficient of volume expansion due to dissolution of CO2 and ez is the unit vector
in the vertical direction. The asterisk denotes dimensional variables. The permeability
field is assumed to be homogeneous and isotropic (constant everywhere). These
equations are supplemented by the following boundary conditions for the vertical
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velocity and the concentration of CO2:

w∗(z∗ = 0) = 0, w∗(z∗ = H ∗) = 0,

C∗(z∗ = 0) = C∗
0 ,

∂C∗

∂z∗ (z∗ = H ∗) = 0,

where H ∗ is the depth of the domain. Recent two-phase simulations by Lindeberg
& Bergmo (2003) have shown that the interface between supercritical CO2 and brine
remains flat. The concentration of dissolved CO2 in the immediate vicinity of the
interface is modelled as a constant, C0. Following Xu et al. (2006) and Ennis-King
et al. (2005), we non-dimensionalize the above equations with the following reference
variables:

X = H ∗, T =
H ∗2

D∗ ,

V =
φD∗

H ∗ , P =
μ∗φD∗

k∗ ,

C = C∗
0 .

The non-dimensional equations which are obtained are

v = −∇P + RaCez, (2.5)

∂C

∂t
+ v · ∇C = ∇2C, (2.6)

∇ · v = 0, (2.7)

C(z = 0) = 1,
∂C

∂z
(z = 1) = 0, (2.8)

w(z = 0) = 0, w(z = 1) = 0, (2.9)

where Ra is the Rayleigh number defined as

Ra =
k∗ρ∗

0βC∗
0gH ∗

μ∗φD∗ .

By taking divergence of the momentum equation, we obtain a Poisson equation for
pressure:

∇2P = Ra
∂C

∂z
. (2.10)

This equation can be used to eliminate pressure from the vertical momentum equation,
resulting in

∇2w = Ra

(
∂2C

∂x2
+

∂2C

∂y2

)
. (2.11)

We formally separate the concentration and the pressure into their base state and
wave-like-perturbations with a fixed horizontal wavenumber k = (kx, ky):

C = Cref + εθ, P = Pref + εΠ,

θ =
∑

n

θ̂n(t) eik·x sin

((
n − 1

2

)
πz

)
,

w =
∑

n

ŵn(t) eik·x sin (nπz) .
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Here, Cref and Pref are the base states of concentration and pressure respectively, θ and
Π are the perturbations and ε is a measure of the amplitude of initial perturbations.
In the above equations, the eigenfunctions in the vertical direction are chosen to
satisfy the boundary conditions (2.8)–(2.9).

Substituting this decomposition into the governing equations, we see that the base-
state equation is the diffusion equation:

∂Cref

∂t
=

∂2Cref

∂z2
, (2.12)

Cref (z = 0) = 1,
∂Cref

∂z
(z = 1) = 0. (2.13)

The analytical solution of the base state is given by

Cref (z, t) = 1 − 4

π

∑
n

1

2n − 1
e−(n−1/2)2π2t sin

((
n − 1

2

)
πz

)
. (2.14)

The perturbation equations are

v = −∇Π + Raθez,

∂θ

∂t
+ w

dCref

dz
= ∇2θ − εv · ∇θ,

θ(z = 0) = 0,
∂θ

∂z
(z = 1) = 0,

w(z = 0) = 0, w(z = 1) = 0.

The equations governing the linear growth of perturbations are obtained by neglecting
the O(ε) term in this set of equations. After neglecting the nonlinear term and using
the eigenfunction expansion for θ and w, we can reduce the above set of PDEs to a
coupled set of ODE–initial-value problems:

d

dt
θ̂n = Gnmθ̂m, (2.15)

G = A−1[B − RahCE−1D], (2.16)

Anm =
1

2
δnm, (2.17)

Bnm = −1

2

[
k2 +

(
m − 1

2

)2

π2

]
δnm, (2.18)

Cnm = −1

2

[
exp

{
−

(
m + n − 1

2

)2

π2t

}
− exp

{
−

(
m − n +

1

2

)2

π2t

}]
, (2.19)

Dnm = (−1)n+m s2n

π
(
n + m − 1

2

) (
n − m + 1

2

) , (2.20)

Enm = −1

2
(k2 + m2π2)δnm. (2.21)

The time-dependence of the matrix G has caused some problems in analysing the
stability of the system. Previous researchers have either used a quasi-steady-state
approximation (QSSA) (Rogers & Morrison 1950) where the matrix is held fixed
at some instant of time t0 or have solved the initial-value problem with arbitrary
initial conditions. QSSA assumes a separation in time scales where the growth rate of
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perturbations is much larger than the rate of change of the base state. Tan & Homsy
(1986) compared the QSSA approach to the solution of the initial-value problem to
study the onset of viscous fingering and found that the solution of the initial-value
problem was more accurate than the QSSA at early time and the two methods give
similar results at large times.

In the second approach the initial-value problem is solved with a so-called ‘white-
noise’ initial condition, for which the perturbation is specified as θ̂n = 1 for all n.
This initial condition was found by Foster (1965) to give the fastest growth rate
of perturbations and was obtained by choosing the fastest observed critical time
among a finite number of trials. It has been recognized (Ennis-King et al. 2005)
that there are at least two problems with this approach. First, the initial condition
chosen might not necessarily correspond to the one giving the fastest growth of
perturbations. In principle, one is interested in the perturbations which are most
amplified at any given time. So far, it has been difficult to determine these most-
amplified initial perturbations. Further, the white-noise condition perturbs the system
everywhere, while one would expect the perturbations to be localized in the diffusive
zone. Second, there is no obvious way of defining a critical time for the onset of
instability. The amplitude of the perturbations decays at early time due to the action
of diffusion. At later times, the amplitude of the perturbations begins to grow and
convection is expected to be the dominant phenomena. For this reason, Xu et al.
(2006) and Ennis-King et al. (2005) used the following criterion as the definition of
the critical time:

d

dt

(∫
θ2dx

)
t=tc

= 0. (2.22)

3. Non-modal stability theory
In this section, we give a brief description of the non-modal stability theory. For

the sake of brevity, only the basic idea is presented. Equations (2.15)–(2.21) can be
concisely written in vector notation as:

d

dt
x = Gx,

where x is the vector of coefficients θ̂n. To maintain clarity, we first discuss the idea of
non-modal stability for a matrix G which has no time-dependence and then generalize
the discussion to the non-autonomous case. If the matrix G has no time-dependence,
the formal solution is given by

x(t) = eGt x(0)

where eGt is the familiar matrix exponential. Now diagonalizing G as G = VΛV−1, we
obtain the following for the amplification σ:

σ (t) = max
x0

||x(t)||
||x(0)|| = ||VeΛtV−1||,

where the norm of a vector is the typical Euclidean norm and the norm of a matrix
is taken to be the induced norm defined as

||G|| = max
||x||=1

||Gx|| . (3.1)
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If the matrix G is a normal matrix, then it has an orthogonal set of eigenvectors and V
is a unitary matrix. In this special case, we recover the normal mode theory σ = eλmax t .
However, if G is not a normal matrix, the growth of perturbations is not given by
the eigenvalues alone and one has to consider the entire norm ||VeΛtV−1||. For a
non-normal matrix G, the eigenvalues only describe the dynamics of the system in the
asymptotic limit as t → ∞. However, what one is most interested in is the finite-time
amplification of perturbations. When the eigenvectors are not orthogonal to each
other, one can form combinations of these eigenvectors which amplify temporarily,
even if all the eigenvectors are characterized by negative eigenvalues. This finite-time
growth can amplify the perturbations to such an extent that the nonlinear terms
neglected in the analysis (v · ∇θ) are no longer negligible. A comprehensive account
of non-modal stability theory is presented in Farrell & Ioannou (1996a) and a recent
text on the subject with applications to shear flow is Schmid & Henningson (2001).
For a recent review on the subject, refer to Schmid (2007).

To compute the norm of the matrix eGt , the idea of singular-value decomposition
(SVD) is used (see Golub & Loan 1996). SVD is a generalization of the idea of
eigenvalues to non-normal (even non-square) matrices. The matrix eGt can be written
as

eGt = UΣVT , (3.2)

where Σ is a diagonal matrix of the singular values of eGt . The growth of perturbations
is bounded by the largest singular value. The matrices U and V are orthogonal matrices
and it can be shown that the column of V corresponding to the largest singular value
is the most amplified initial vector, whose final state is the corresponding column
of U.

In the case of non-autonomous systems

d

dt
x = G(t)x, (3.3)

the analysis is slightly modified as the matrix exponential is no longer the fundamental
solution. Let us define the fundamental solution operator (or the propagator) of the
system as

x(t) = X(t; t0)x(t0), (3.4)

i.e. X(t; t0) is a time-dependent matrix that transforms any initial condition at time
t0 into the solution of the initial-value problem at time t . Substituting (3.4) into
(2.15)–(2.21), we obtain the following matrix differential equation:

d

dt
X(t; t0) = G(t)X(t; t0), (3.5)

with the initial condition,

X(t0; t0) = I, (3.6)

where I is the identity matrix. This is now a well-posed problem with known initial
conditions. The solution of this differential equation effectively solves the linear
system in (3.3) for the entire space of initial conditions. Now, the amplification can
be computed from

σ (t) = max
x0

||x(t)||
||x(t0)||

= ||X(t; t0)|| . (3.7)
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Figure 2. Amplification predicted from non-modal theory (solid line) compared to that
obtained using the solution of the ODE with random initial perturbations (lines with symbols
– four different realizations are shown). The initial condition used by Ennis-King et al. (2005)
and Xu et al. (2006) is also shown (dashed line).

This is the approach that is followed in this paper. We use a fourth-order Runge–
Kutta method to solve the initial-value problem in (3.5) for the fundamental solution
operator X(t; t0). Then a singular-value decomposition of this matrix gives us the
largest growth possible for any initial condition, along with the initial condition
that leads to this growth. In figure 2, we compare the amplification of perturbations
obtained using the non-modal stability theory (solid line) to the growth rate obtained
from the solution of the initial-value problem where the initial conditions were
generated using a random number generator for Ra = 400, k = 3π. The growth
predicted from the initial condition used by Ennis-King et al. (2005) and Xu et al.
(2006) is also shown (dashed line). The critical time is defined by these authors as
the minimum in the amplification curve (at t ∼ 0.001). The growth calculated from
the non-modal theory is the maximum among all possible initial conditions, and
one can obtain the initial condition which realizes this growth using a singular-value
decomposition as described above.

In figure 3, we show the maximum amplification achieved by the perturbations
as a function of the horizontal wavenumber of the initial perturbation. The system
has a Rayleigh number of Ra = 100. It can be seen that in the limit t → ∞,
the perturbations of all wavenumbers decay. However, they can undergo significant
amplification (about 4 orders of magnitude) in a finite amount of time, even for
a rather low Rayleigh number of 100. If during this period of amplification the
neglected nonlinear terms (v · ∇θ) become so large that they cannot be neglected any
more, the linear theory is no longer applicable and the dynamics of the perturbations
take a different route from that suggested by linear theory. The wavenumber achieving
maximum amplification is seen to be k = 4.1888 and the corresponding wavelength
is 1.5H ∗.

Non-modal stability theory also provides us with the structure of the most amplified
perturbation. It can be seen from figure 3 that, among the wavenumbers shown, at
t = 0.6 the most amplified wavenumber is |k| = 4.1888 whereas at t = 1.5, the
most amplified wavenumber is |k| = 2.9322. In figure 4, we show the most amplified
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Figure 3. Effect of wavenumber of perturbation on the maximum amplification achieved for
Ra = 100. The dominant wavenumber is different at different times.
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Figure 4. Horizontal wavenumber of the most amplified initial perturbation at different
times for Ra = 1000.

wavenumber as a function of the non-dimensional time for Ra = 1000. The non-
modal calculations were performed for a series of wavenumbers, and at each time
we plot the wavenumber which achieves the most amplification. We see that at early
times large wavenumbers are excited leading to a small-scale structure of the flow
field. At later times, the long-wave perturbations are most active. At the onset of
fingering, we expect to see a range of wavenumbers, each amplified according to
the corresponding growth predicted from theory. In figure 5, we show the contours
of the initial perturbation of concentration that is most amplified at t = 0.01. As
expected, we see that the perturbation is localized within the diffusive zone. Owing
to the spatial symmetry of the governing equations in the horizontal direction, we
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Figure 5. Contours of the most unstable initial perturbation for Ra = 1000.

can only obtain the magnitude of the wavenumber vector |k| = (k2
x + k2

y)
1/2. It is not

possible to predict which combination of kx and ky will be realized in practice. For

the contours of concentration shown in figure 5, we have taken kx = ky = |k| /
√

2.

4. Direct numerical simulations
4.1. Description of the numerical method

In this section, we describe the three-dimensional pseudo-spectral direct numerical
simulations of the governing equations. Looking at the eigenfunction expansion of
the base state in (2.14), we see that the coefficients of the expansion decay super-
exponentially at any finite time. This implies that a numerical simulation utilizing
these eigenfunctions will demonstrate spectral accuracy. This rapid convergence can be
expected to hold as long as the diffusive state has some dominance in the dynamics of
the system. At later times, when the nonlinear convection process becomes dominant,
the accuracy need not necessarily be exponential; however it is still much more
accurate than any traditional finite-volume method. Further, at t ∼ 0, the coefficients
only decay as θ̂n ∼ n−1 leading to bad convergence properties. For this reason, all
the numerical simulations performed use an initial condition given by the base-state
profile (2.14) at a finite time t = 0.001. This corresponds to letting the system diffuse
for some time, before the perturbations are added. An excellent introduction to the
pseudospectral method and considerations of its accuracy are provided in the books
by Canuto et al. (1988) and Peyret (2002).

Given the concentration field at any discrete time C(n)(x) = C(t (n), x), we need
to calculate the velocity field in order to advance to the next time step. In our
formulation, we first solve the Poisson equation for the vertical velocity (2.11) for w.
We now need two more equations to solve for the horizontal components of velocity.
One of these equations is the constraint of incompressibility:

∂u

∂x
+

∂v

∂y
= −∂w

∂z
. (4.1)
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The second equation is obtained by taking a curl of Darcy’s equation, to obtain an
equation for the vorticity:

ω =
∂C

∂y
ex − ∂C

∂x
ey. (4.2)

In particular, for the vertical component of the vorticity, we have

ωz =
∂v

∂x
− ∂u

∂y
= 0. (4.3)

Once the vertical component of the velocity is obtained, the horizontal components
are obtained by solving (4.1) and (4.3) simultaneously.

The spectral method used in this work expands the concentration and
vertical velocity using Fourier-modes in the horizontal direction and the relevant
eigenfunctions in the vertical direction:

C =
∑
k,n

Ĉkne
ik·xsin

((
n − 1

2

)
πz

)
, (4.4)

w =
∑
k,n

ŵkne
ik·xsin (nπz) , (4.5)

u =
∑

k

ûk(z)e
ik·x, (4.6)

v =
∑

k

v̂k(z)e
ik·x, (4.7)

where k = (kx, ky) are the wavenumbers of the perturbations in the horizontal

directions and Ĉkn, ŵkn, ûkn and v̂kn are the coefficients of the eigenfunction
expansion. Using the above expansions in (2.11) along with the orthogonality of
the eigenfunctions, we obtain

ŵkm =
2Rak2

k2 + m2π2
WmnĈkn (4.8)

where W is a matrix of inner-products of the various eigenfunctions of w and C,

Wmn =

∫ 1

0

sin(mπz)sin

((
n − 1

2

)
πz

)
dz

=
(−1)(m+n)m

π
(
m − n + 1

2

)(
m + n − 1

2

) .

For every wavenumber k, the above operation gives the spectral coefficients of the
vertical velocity component using a simple matrix-vector multiplication. Now using
(4.5)–(4.7) in (4.1) and (4.3), the horizontal components of the velocity can be obtained
for each wavenumber as

ûk(z) =
ikx

k2

∂ŵk

∂z
, (4.9)

v̂k(z) =
iky

k2

∂ŵk

∂z
(4.10)

where

ŵk(z) =
∑

n

ŵkn sin (nπz) . (4.11)
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(a) (b)

(c) (d)

Figure 6. Isosurfaces of the concentration of carbon dioxide for a simulation with Ra = 1000.
The isosurfaces are plotted at (a) t = 1.59 × 10−3, (b) t = 2 × 10−3, (c) t = 3 × 10−3 and (d)
t = 4 × 10−3.

Once the Fourier-transformed velocity fields have been computed slice-by-slice, the
velocity in the physical space can be obtained by a fast Fourier transform operation.
The nonlinear term is calculated using the pseudospectral technique in physical
space. The transport equation is advanced in time using a second-order Runge–Kutta
method. The simulations are carried out using a non-dimensional time step of 10−6 and
a grid resolution of 1283. For a domain depth of 40 m, this corresponds to a physical
time step of 18.5 days and a grid spacing of 0.3 m. The simulation is parallelized
along slices in the horizontal direction. Using 16 processors, the simulations take
about one hour for every 1000 time steps. A simple diffusion test was conducted
where the initial condition was the base-state profile at t0 = 0.001. The error between
the numerical simulation and the analytical result for the concentration field at all
subsequent times was of O(�t2) and the velocity field was exactly v = 0. In figure 6,
we show isosurfaces of the concentration of carbon dioxide (C = 0.3) at different
times, obtained using the spectral simulations. The Rayleigh number for these plots
is Ra = 1000. The simulations were also performed with various combinations of kx

and ky of initial perturbation keeping |k| fixed. As predicted by the linear theory, the
amplifications for these different cases only depends on |k| and not on the values of
kx and ky .

4.2. Comparison with non-modal stability theory

The most unstable perturbation extracted from the non-modal stability theory
was given as the initial condition for the three-dimensional simulations. Using the
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Figure 7. Comparison of the amplifications from non-modal theory (solid line) and
simulations (squares). Also plotted is the total dissolution flux (triangles).

analytical solution for the base state, the amplification of perturbations was computed
at every time step using

σ (n)(t) =

∫ (
C(n)(x) − Cref (z, t

n)
)2

dx

In figure 7, we show the amplification predicted by the linear theory using a solid
line and that measured in the simulations using squares. The parameters for the test
are Ra = 400 where the initial perturbation is with wavenumber k = (4π, 2π). It
can be seen that there is an excellent match between the theory and simulations up
to t = 0.01 when the growth of perturbations in the simulations slowly begins to
saturate. This saturation occurs when the nonlinear term v · ∇θ , which was neglected
in deriving the linear ODEs, becomes large enough that it cannot be neglected any
more. Beyond this time, the linear theory is no longer valid and the amplification
predicted by the theory is not a meaningful quantity.

As has already been noted by Ennis-King et al. (2005), the process of linearization
makes it difficult to define a time scale for the onset of convection. Looking at the
amplification curve obtained from non-modal theory in figure 7, it is clear that there
is no natural way of picking a characteristic time scale which we can define as the
onset of convection. Further, we can rigorously prove that the linear problem is
asymptotically stable (refer to Bauer & Nohel 1969). This is a consequence of the
finite size of the domain where all the perturbations eventually have to diminish (in
the t → ∞ limit). In this paper, we claim that the time at which the nonlinear terms
begin to dominate is a useful characteristic time scale for the problem.

Since the reason we are interested in the fingering process is enhancement of
dissolution, let us consider the total rate of dissolution of carbon dioxide into the
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saline aquifer. Integrating the transport equation, we obtain the following equation:

d

dt

∫
Cdx =

∫
(∇C · n)z=0 dS. (4.12)

The integral on the right is the total instantaneous flux of dissolution into the system,
J , which can be written as the sum of contributions from the base state and the
perturbations:

J = −
(

∂C

∂z

)
z=0

= −
(

∂Cref

∂z

)
z=0

− ε

(
∂θ

∂z

)
z=0

. (4.13)

The flux due to the base state can be computed explicitly as

−
(

∂Cref

∂z

)
z=0

= 2
∑

n

e−(n−1/2)2π2t . (4.14)

Taking a time-derivative to compute the rate at which the total flux is changing, we
obtain

d

dt
J = −2

∑
n

(
n − 1

2

)2

π2e−(n−1/2)2π2t + ε
d

dt

[
−

(
∂θ

∂z

)
z=0

]
. (4.15)

In this equation, the first term on the right is the contribution due to the base
state. This term is always negative, since diffusion tends to reduce the gradients
of concentration. The second term is the contribution of the perturbations, and is
positive or negative depending on whether the perturbations are being damped by
diffusion, or are increasing owing to the amplification of perturbations.

When the perturbations are small enough that the linear theory is still valid, we
have (

∂θ

∂z

)
z=0

=
∑

k

(
n − 1

2

)
πθ̂kne

ik·x .

The perturbations do not make any contribution to the total flux owing to their
wave-like nature. Within the limits of linear theory, the flux is entirely due to the base
state. Once the perturbations amplify sufficiently that the linear theory does not hold
any more, the total flux begins to rise sharply. In figure 7, we have also plotted the
total dissolution flux measured from the simulation (plotted using triangles). We can
see that, as the growth of perturbations begins to deviate from the predictions of the
non-modal theory, the total flux begins to rise sharply. The time at which the total
flux reaches a minimum and begins to amplify corresponds very closely to the time
at which the amplification of the perturbations from the spectral simulations begins
to deviate from the linear theory. After this, the total flux begins to rise sharply and
this is the time when the fingers are growing rapidly. In the results of the spectral
simulation shown in figure 6, the isosurfaces shown in (a) correspond to the time at
which the total flux has reached a minimum. One can see the formation of the early
fingers which grow rapidly in figure 6(b–d).

We claim that for homogeneous systems the time at which the total dissolution
flux begins to increase is a useful characteristic time scale of the problem, and that
this time corresponds to the birth of the fingers. We define the time for the onset of
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Figure 8. Evolution of the total flux at the top boundary for different amplitudes of initial
perturbation. The bold circles are predictions from the non-modal theory and the various
lines are: dashed: ε = 10−1, dash-dot: ε = 10−2, dash-dot-dot: ε = 10−3 and bold solid line:
ε = 10−5.

convection as (
d

dt
J

)
t=tonset

= 0. (4.16)

Foster (1965) mentions that ‘At some point during this superexponential growth the
disturbance will grow so rapidly that it will cause the fluid to rather suddenly appear
to exhibit ‘instability’. It seems reasonable to assume that this ‘onset of instability’
will be manifest when the averaged velocity disturbance has increased by a factor
between one and three orders of magnitude’. We believe that this sudden appearance
of instability occurs when the nonlinear terms have undergone sufficient amplification
that the total flux begins to increase.

We now consider the effect of varying the amplitude of the initial perturbation.
In figure 8, we plot the evolution of the total flux at the top of the boundary
for four different simulations with a Rayleigh number of Ra = 120 and (kx, ky) =
(2π, 2π). These simulations were carried out with the same initial condition, but with
magnitudes of perturbation strength ε of 10−1 (dashed line), 10−2 (dash-dot), 10−3

(dash-dot-dot) and 10−5 (solid line). The symbols correspond to the growth rate
predicted by the non-modal theory. It can be seen that as the perturbation is made
weaker, the time at which the nonlinear terms begin to dominate increases. For this
example with a relatively low Rayleigh number, when the perturbation strength is
ε = 10−5, the nonlinear term never becomes dominant. For a real physical system,
it is difficult to characterize the amplitude of initial perturbations. Real systems are
always heterogeneous and contain variations in the permeability field at all length
scales. These variations in the permeability field provide us with the perturbations
which eventually lead to the formation of fingers. One can reason that the amplitude
of perturbations can be related to some measure of the magnitude of fluctuations of
the permeability field within the diffuse layer. Further work is required to understand
and quantify this dependence.
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5. Discussion
In this paper, we have used non-modal stability theory to rigorously obtain the

maximum growth rate achieved by any perturbation at a given time. To the best
of our knowledge, such an approach has not yet been applied to study stability
of flows in porous media. We have also used this approach to derive the spatial
structure of the initial perturbations which lead to this growth. The most-amplified
initial perturbations are seen to be strongly localized within the diffusive zone as
one would expect. This is a significant improvement on previous results which had
to depend on solutions of an initial-value problem with arbitrary initial conditions
where the perturbations are distributed over all space. We have also developed an
extremely accurate three-dimensional spectral solver for the governing equations and
shown that the growth rates predicted from theory match extremely well with those
observed in simulation.

As shown in the previous Section, the time at which the perturbations saturate
(and the process of convection begins) is strongly related to the strength of the initial
perturbations. In a real physical system, the perturbations are introduced by the
heterogeneous nature of the porous medium. Real porous media are heterogeneous
over a very wide range of length scales, leading to a continuous perturbation over
many different scales. Engineering simulations, however, filter out a large spectrum
of these perturbations due to a shortage of experimental data. The simulations
presented in this paper are a limiting case of such a filtering process, whereby all the
perturbations of the porous medium are eliminated to yield a homogeneous system
and the effects of those perturbations have been modelled by the initial perturbations
added to the system. As seen from the results of the previous Sections (and from
preliminary simulations with fully heterogeneous media, to be presented elsewhere),
the exact nature and magnitude of perturbations plays a significant role in the
dynamics of the system. So, we can see that the amplitude of initial perturbations is a
parameter that needs to be obtained before we can make predictions of the time scales
of convection at a given site. The amplitude of initial perturbations can in principle be
obtained experimentally by computing the heat flux in a core-scale thermal experiment
and comparing it to numerical simulations. With the knowledge of the effective
magnitude of initial perturbations, we will be in a position to make predictions of the
time scales of convection. Studies of the onset of convection in heterogeneous media
are rather limited. A stochastic study of the effect of heterogeneity on the onset of
convection is given in Prasad & Simmons (2003). Further research is needed in this
direction to quantify the effects of the heterogeneity of the medium.

The purpose of these simulations is to provide valuable insight into the roles of
various parameters in the process of the onset of convection and not to provide
long-time results for the problem. Additional effects that need to be considered in
the future are capillary effects, and those of reaction and dispersion. For reasons of
simplicity, we have also assumed one of the principal axes of the permeability tensor
to be aligned with the direction of gravity. The effects of the orientation of the porous
media also need to be considered in the future.

The authors would like to thank Professor Andrea Prosperetti and Professor
Gregory Eyink for extremely helpful discussions. The authors would also like to
thank the anonymous reviewers of a previous version of this paper who correctly
pointed out the problems with the QSSA approach. This helped us in developing the
non-modal stability theory for the problem.
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